7/18/2018 Julia Stackler
Written by Julia Stackler
Assistant Professor Aimy Wissa has conducted aerodynamic testing and structural modeling on a single covert feather, and now, a new Young Investigator award from the Air Force Office of Scientific Research (an AFOSR YIP award) will allow Wissa and her team to use this modeling to create a full wing system equipped with covert feathers in both chord and span directions. This marks the first time engineers will create a design framework based on aeroelastic experiments and simulations to implement the covert-inspired structures in a full wing system.
Her project, “Spatially Distributed Passively Deployable Structures for Stall Mitigation,” was born out of a collaboration with the Air Force Design and Analysis branch following Wissa’s 2016 summer fellowship at the Air Force Research Lab. Funding is through AFOSR’s Multi-Scale Structural Mechanics and Prognosis program.
According to Wissa, the deployment dynamics as well as the effect of the geometric and structural parameters of the covert feathers on the flight performance of birds are not well understood, even among the biology community.
As part of this effort, Wissa and her team will design spatially distributed covert-inspired deployable structures on the upper and lower surfaces of a wing. These new structures will be deployed passively (i.e. without the need for actuators or sensors) over a range of flight conditions. They will use multi-material additive manufacturing to create hard and soft materials to achieve a compliant hinge that allows and tailors the passive deployment of these feather-inspired structures.
“This is reflective of our BAM Lab approach to UAV design: investigating a current limitation of engineered UAVs due to aerodynamic scaling, Reynolds number effects, or challenging mission requirements and transforming it using informed design principles from nature to improve efficiency and extend the vehicle’s flight envelope. In this process, not only do we improve the engineering state of the art, but we also contribute to the understanding of the biological function,” said Wissa.
Photo, at top: An owl with the upper wing coverts deployed at a high angle of attack approach for landing.