TAM 251

TAM 251 - Introductory Solid Mechanics

Summer 2024

TitleRubricSectionCRNTypeHoursTimesDaysLocationInstructor
Introductory Solid MechanicsTAM251AL130464LEC31000 - 1150 M W F  4100 Sidney Lu Mech Engr Bldg Chai Saengow
Tusher Ahmed
Yaswanth Sai Jetti
Introductory Solid MechanicsTAM251OLC41671OLC3 -    Chai Saengow
Tusher Ahmed
Yaswanth Sai Jetti

Official Description

Relationship between internal stresses and deformations produced by external forces acting on deformable bodies, and design principles based on mechanics of solids: normal stresses, shear stresses, and deformations produced by tensile, compressive, torsional, and bending loading of members; beam deflections; elastic energy and impact; multi-dimensional stress states; buckling of columns. Course Information: Prerequisite: TAM 210 or TAM 211.

Detailed Course Description

Relationship between internal stresses and deformations produced by external forces acting on deformable bodies, and design principles based on mechanics of solids: normal stresses, shear stresses, and deformations produced by tensile, compressive, torsional, and bending loading of members; beam deflections; elastic energy and impact; multi-dimensional stress states; and buckling of columns. Prerequisite: TAM 210 or TAM 211. 3 undergraduate hours.

Topics:

Basic concepts of stress and strain (4 hr)
Uniaxial loading and deformation: Statically determinate and indeterminate problems; design based on yield strength, ultimate strength (5 hr)
Torsion of circular shafts and thin-walled sections: Geometry of deformation, stress, distribution, statically determinate and indeterminate systems, design of shafts for power transmission (9 hr)
Stresses due to bending: Geometry of deformation, stress distribution, symmetric elastic beams, transverse shear, built-up beams, design of beams for structural applications (9 hr)
Beam deflections: Differential equations, double integration, direct integration, method of superposition, design based on deflections, slopes, shear forces, and bending moments (7 hr)
Multi-axial stress and strain states: Transformation of stress and strain, Mohr|#39;s circle representations, principal stresses and strains, states of plane stress and plane strain, two-dimensional elastic stress-strain relations, yield criteria, design problems for combined states of stress (6 hr)
Buckling of columns: Euler theory, design of columns (3 hr)
TOTAL HOURS: 44

Last updated

9/19/2018