BS in Engineering Mechanics

Program Overview

Mechanics is the study of forces that act on bodies and the resultant motion that those bodies experience. With roots in physics and mathematics, Engineering Mechanics is the basis of all the mechanical sciences: civil engineering, materials science and engineering, mechanical engineering and aeronautical and aerospace engineering. Engineering Mechanics provides the “building blocks” of statics, dynamics, strength of materials, and fluid dynamics. Engineering mechanics is the discipline devoted to the solution of mechanics problems through the integrated application of mathematical, scientific, and engineering principles. Special emphasis is placed on the physical principles underlying modern engineering design.

Engineering Mechanics students are also encouraged to engage in undergraduate research with a faculty member. As a result, Engineering Mechanics students are prepared for careers at the forefront of a wide variety of fields, including the aerospace, electronics, automotive, manufacturing, software, and computer industries. Our ABET accredited curriculum also provides excellent preparation for graduate school in many different engineering disciplines.

To learn more about our Engineering Mechanics program check out our Engineering Mechanics brochure!

EM Curriculum Requirements

The flowsheets below are a semester-by-semester visual outline of the courses required within the Engineering Mechanics curriculum.  The flowsheets are provided to enable students and advisors to visualize pre-, co-, and post-requisites associated with specific courses within the curriculum.  This is a tool to enable you to understand how courses are connected throughout our curriculum to provide guidance regarding course registration and scheduling. 


Click to access .pdf version of the EM flowsheet


Want a more interactive experience?  Use our Engineering Mechanics digital flowsheet.

Note:  For full functionality, please use the digital flowsheet in Adobe Reader. This digital flowsheet has known compatibility issues in Mac Viewer. Changes may not be saved properly to the digital flowsheet if it is not downloaded, opened, modified, and saved in Adobe.

For an in-browser visualization of pre-,co-, and post-requisites visit the College of Engineering's Engineering Mechanics flowsheet

EM Secondary Fields

One unique aspect of the Engineering Mechanics program is that students can focus their studies through a Secondary Field.  Secondary Fields are often built around a student’s long-term career interests, integrating their Engineering Mechanics curriculum with another area of specialization.

Secondary fields come in two varieties, pre-approved or customized. There are seven pre-approved secondary field options listed below that specify required courses and provide a list of approved courses from which the student may choose. Alternatively, with departmental approval, the student may create their own, individualized secondary field option. For both the pre-approved and customized secondary field options, the secondary field will need to be formally declared using this form.

To create your own secondary field, courses chosen must: 

  • be related to mechanics,
  • form a coherent and cohesive group,
  • include at least two engineering courses,
  • include atleast 6 hours of 400-level coursework,
  • have a maximum of 6 hours of 300-level coursework, unless otherwise approved, and  
  • total at least 12 hours of advanced-level* coursework distinct from required courses in the EM curriculum.

MechSE 2.25 GPA and TGPA Requirements

The MechSE Department maintains a cumulative 2.25 grade-point-average (GPA) requirement for lower-level technical courses. In order for a student to move onto upper-level (generally 300/400-level) ME or TAM courses, the 2.25 GPA requirement must be met. Failure to meet the 2.25 GPA will require students to retake previous coursework and potentially reduce course loads to meet the 2.25 GPA requirement.

Once students gets into their upper-level, more specialized coursework, a cumulative technical GPA (TGPA) requirement is implemented in addition to the traditional cumulative GPA requirement (>2.0 GPA to remain clear of probationary status). Students who do not have a TGPA of atleast 2.0 will be subject to probationary rules and will not be able to graduate. For more information on probationary rules, please see the Student Code, Article 3 - Academic Policies and Regulations.  

The back of the EM flowsheet indicates courses in the EM curriculum subject to 2.25 GPA and TGPA rules.

 

A complete list of courses included in MechSE's TGPA calculation is below.